Investigations of atomic & molecular processes of NBI-heated discharges in the MAST Upgrade Super-X divertor with implications for reactors

K. Verhaegh,J. R. Harrison, B. Lipschultz, N. Lonigro, S. Kobussen, D. Moulton, N. Osborne, P. Ryan, C. Theiler,T. Wijkamp, D. Brida, G. Derks, R. Doyle, F. Federici, A. Hakola, S. Henderson, B. Kool, S. Newton, R. Osawa, X. Pope,H. Reimerdes, N. Vianello,M. Wischmeier

arXiv (Cornell University)(2023)

引用 0|浏览13
暂无评分
摘要
This experimental study presents an in-depth investigation of the MAST-U Super-X divertor's performance during NBI-heated operation (up to 2.5 MW) focusing on volumetric ion sources and sinks as well as power losses during detachment. The particle balance and power loss analysis revealed the crucial role of Molecular Activated Recombination and Dissociation (MAR and MAD) ion sinks in divertor particle and power balance, which remain pronounced in the change from ohmic to higher power (NBI heated) L-mode conditions. The importance of MAR and MAD remains with a doubling of the absorbed NBI heating. MAD results in significant power dissipation (up to ∼ 20 % of P_SOL), mostly in the cold (T_e < 5 eV) detached region. Theoretical and experimental evidence is found for the potential contribution of D^- to MAR and MAD, warranting further study. These results suggest that MAR and MAD can be relevant in higher power conditions than the ohmic conditions studied previously. Post-processing reactor-scale simulations shows that MAR and MAD can play a significant role on divertor physics and synthetic diagnostic signals of reactor-scale devices, which are currently underestimated in exhaust simulations. This raises implications for the accuracy of reactor-scale divertor simulations of particularly tightly baffled (alternative) divertor configurations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要