Utilizing Molecular Simulation to Examine Nanosuspension Stability

crossref(2023)

引用 0|浏览1
暂无评分
摘要
Drug nanosuspensions offer a promising approach to improve bioavailability for poorly soluble drug candidates. Such formulations often necessitate the inclusion of an excipient to stabilize the drug nanoparticles. However, a rationale to choose the correct excipient for a given drug candidate remains unclear. To gain molecular insight into formulation design, this work first utilizes molecular dynamics simulation to computationally investigate drug-excipient interactions for a number of combinations that have been previously studied experimentally. We find that hydrophobic interactions drive excipient adsorption to drug nanoparticles, and that the fraction of polar surface area serves as a predictor for experimental measurements of nanosuspension stability. To test these ideas prospectively, we applied our model to an uncharacterized drug compound, GDC-0810. Our simulations predicted that salt forms of GDC-0810 would lead to more stable nanosuspensions than the neutral form; therefore, we tested the stability of salt GDC-0810 nanosuspensions and found that the salt form readily formed nanosuspensions even without excipient. To avoid computationally expensive simulations in the future, we extended our model by showing that simple, two-dimensional properties of the single drug molecule can be used to rationalize nanosuspension design without simulation. In all, our work demonstrates how computational tools can provide molecular insight into drug-excipient interactions, and aid in rational formulation design.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要