Activating doped graphene surface by cobalt-rich sulfide encapsulation toward oxygen reduction electrocatalysis

Yi Li, Zhaoao Cao, Yongying Wang,Bing Li, Juan Yang,Zhongti Sun

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览3
暂无评分
摘要
Similar to proton exchange membrane fuel cell, anion-exchange membrane fuel cell is also a significant energy conversion device for achieving the utilization of clean hydrogen energy. However, the cathodic alkaline oxygen reduction reaction (ORR) is kinetically not favored and usually requires platinum-group metal (PGM) catalysts such as Pt/C to reduce the overpotential. The major challenge in using PGM-free catalysts for ORR is their low efficiency and poor stability, which urgently demands new concepts and strategies to address this issue. Herein, we controllably manufactured a N, S-co doped graphene encapsulating uniform cobalt-rich sulfides (Co8FeS8@NSG) by a universal synthesis strategy. After encapsulation, electron transfer from the encapsulated cobalt-rich sulfides to the doped graphene was greatly promoted, which effectively optimizes the electronic structure of the doped graphene, thereby enhancing the ORR activity of the doped graphene surface. Consequently, the Co8FeS8@NSG exhibits enhanced ORR activity with a higher half-wave potential of 0.868 V (versus reversible hydrogen electrode, vs. RHE) when compared with pure NSG (0.765 V vs. RHE). Density functional theory calculations further confirm that the construction of interface for NSG encapsulating cobalt-rich sulfides could conspicuously elevate the ORR activity through slightly positively-charged C active site and thus simultaneously enhancing electronic conductivity.
更多
查看译文
关键词
Anion-exchange membrane fuel cells,S-co doped graphene,Co 8 FeS 8,Oxygen reduction reaction,Electrocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要