Emittance-preserving acceleration of high-quality positron beams using warm plasma filaments

arXiv (Cornell University)(2023)

引用 0|浏览9
暂无评分
摘要
Preserving the quality of positron beams in plasma-based accelerators, where wakefields are generated in electron filaments, is challenging. These wakefields are characterized by transversely non-linear focusing fields and non-uniform accelerating fields. However, a nonzero plasma temperature linearizes the transverse wakefield within the central region of the electron filament. In this study, we employ 3D particle-in-cell simulations with mesh refinement to demonstrate that beams with emittances on the order of tens of nanometers are contained within the linearized region of the transverse wakefield. This enables emittance preservation to one percent, while positron beams with the same charge and micrometer emittances, which sample the non-linear part of the transverse wakefield, experience a relative emittance growth of ten percent. Additionally, we observe a significant reduction in the growth rate of the slice energy spread for the tens of nanometers emittance beams in comparison to the micrometer emittance beams. The utilization of warm plasmas in conjunction with low-emittance beams opens up new avenues for enhancing the beam quality across various plasma-based positron acceleration approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要