Efficient PFOA removal from drinking water by a dual-functional mixed-matrix-composite nanofiltration membrane

npj Clean Water(2023)

引用 0|浏览6
暂无评分
摘要
Drinking water contamination by per- and polyfluorinated alkyl substances (PFAS) is a global concern. Nanofiltration is a promising PFAS removal technology due to its scalability and cost-effectiveness. However, nanofiltration cannot typically reduce PFAS concentrations below current drinking water recommendations. To enhance PFAS removal, we developed mixed-matrix-composite nanofiltration (MMCNF) membranes—an active nanofiltration layer on porous adsorptive support that synergetically combines filtration and adsorption. We synthesized MMCNF membranes comprising thin polyelectrolyte multilayer films deposited on thick (~400 µm) polyethersulfone supports incorporating β-cyclodextrin microparticles. These membranes achieved near complete removal (>99.9%) of model PFAS (PFOA: perfluorooctanoic acid) for significantly longer filtration times compared to a control membrane without β-cyclodextrin, but otherwise identical. The spent MMCNF membrane was regenerated using ethanol, and high PFOA removal performance was regained during three filtration cycles. Perfluorooctanoic acid was concentrated 38-fold in the ethanol eluent. Further concentration by evaporation is straightforward and can enable eluent recycling and effective PFAS removal.
更多
查看译文
关键词
nanofiltration,efficient pfoa removal,membrane,dual-functional,mixed-matrix-composite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要