Comparison of the ozone formation mechanisms and VOCs apportionment in different ozone pollution episodes in urban Beijing in 2019 and 2020: Insights for ozone pollution control strategies

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览19
暂无评分
摘要
Ground-level ozone (O3) pollution has been a tough issue in urban areas of China in the past decade. Clarifying the formation mechanisms of O3 and the sources of its precursors is necessary for the effective prevention of O3 pollution. In this study, a comparative analysis of O3 formation mechanisms and VOCs apportionment for five O3 pollution episodes was carried out at two urban sites (CRAES and CGZ) in Beijing in 2019 and 2020 by applying an observation-based modeling approach in order to obtain insights into O3 pollution control strategies. Results indicated that O3 pollution levels were generally more severe in 2019 than in 2020 during the observation periods. O3 formation at the two sites was both VOCs-limited on O3 polluted days and non-O3 polluted days. Stronger atmospheric oxidation capacity and ROx radicals cycling processes were found on O3 polluted days which could accelerate the local production of O3, and local photochemical production dominated the observed O3 concentrations at the two sites even on non-O3 polluted days. Emission reduction of VOCs should be a priority for mitigating O3 pollution, and alkenes and biogenic VOCs was the priority species at the CRAES and CGZ sites, respectively. Additionally, the reduction of oxygenated VOCs should also be important for the ozone control. Gasoline exhaust at the CRAES site, and solvent utilization and fuel evaporation at the CGZ site were main anthropogenic sources of VOCs. Therefore, local control measures should be further strengthened and differentiated control strategies of VOCs in the aspects of area, time, sources and species should be adopted in urban Beijing in the future. Overall, the findings of this study could provide a scientific understanding of the causes of O3 pollution and significant guidelines for formulating O3 control strategies from the perspective of different ozone pollution episodes in urban Beijing.
更多
查看译文
关键词
Ozone pollution,VOCs,Characteristics,Formation mechanism,Source apportionment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要