Modulating the hydrophobicity of cellulose by lipase-catalyzed transesterification

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览4
暂无评分
摘要
The production of hydrophobic and oil resistant cellulosic fibers usually requires severe chemical treatments and generates toxic by-products. Alternative approaches such as biocatalysis use milder conditions; lipase-catalyzed methods for grafting nanocellulose with hydrophobic ester moieties have been reported. Here, we investigate the lipase-catalyzed esterification of cellulose fibers, in native form or pretreated with 1,4-beta-glucanases, and cellulose nanocrystals (CNC) in solvent-free conditions. The fibers were compared for degree of ester formation after incubation with methyl myristate and lipase at 50 degrees C. After washing, the grafting of fatty esters on cellulose was confirmed by ATR-FTIR and the degree of substitution determined by 13C CP/MAS NMR (from 0.04 up to DS 0.1) confirming successful esterification. Optical photothermal infrared (O-PTIR) spectroscopy showed strongly localized presence of ester moieties on cellulose. Functional properties mirrored the degree of substitution of the cellulose materials whereby cellulose esters made with glucanase-pretreatment produced the highest water contact angle of 117 degrees +/- 9 and esterified cellulose blended at 10 % w/w content in paper composites showed significant differences in hydrophobicity and lipophilicity compared to plain paper. The esterification of cellulose was completely reversed by lipase treatment in aqueous media. These ester-functionalized fibers show potential in a wide range of packaging applications.
更多
查看译文
关键词
Ester grafting,Surface analysis,Hydrophobic paper
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要