谷歌浏览器插件
订阅小程序
在清言上使用

Characterizing the 2022 Extreme Drought Event over the Poyang Lake Basin Using Multiple Satellite Remote Sensing Observations and in Situ Data

Remote sensing(2023)

引用 0|浏览9
暂无评分
摘要
With advancements in remote sensing technology and the increasing availability of remote sensing platforms, the capacity to monitor droughts using multiple satellite remote sensing observations has significantly improved. This enhanced capability facilitates a comprehensive understanding of drought conditions and early warnings for extreme drought events. In this study, multiple satellite datasets, including Gravity Recovery and Climate Experiment (GRACE), the Global Precipitation Measurement (GPM) precipitation dataset, and the Global Land the Data Assimilation System (GLDAS) dataset, were used to conduct an innovative in-depth characteristic analysis and identification of the extreme drought event in the Poyang Lake Basin (PLB) in 2022. Furthermore, the drought characteristics were also supplemented by processing the synthetic aperture radar (SAR) image data to obtain lake water area changes and integrating in situ water level data as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index dataset, which provided additional instances of utilizing multi-source remote sensing satellite data for feature analysis on extreme drought events. The extreme drought event in 2022 was identified by the detection of non-seasonal negative anomalies in terrestrial water storage derived from the GRACE and GLDAS datasets. The Mann–Kendall (M-K) test results for water levels indicated a significant abrupt decrease around July 2022, passing a significance test with a 95% confidence level, which further validated the reliability of our finding. The minimum area of Poyang Lake estimated by SAR data, corresponding to 814 km2, matched well with the observed drought characteristics. Additionally, the evident lower vegetation index compared to other years also demonstrated the severity of the drought event. The utilization of these diverse datasets and their validation in this study can contribute to achieving a multi-dimensional monitoring of drought characteristics and the establishment of more robust drought models.
更多
查看译文
关键词
extreme drought,PLB,GRACE,MODIS,GPM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要