Chrome Extension
WeChat Mini Program
Use on ChatGLM

Investigation on the Damping Effect of FST System under Moving Load Using the Track-Tunnel-Layered Saturated Ground Model

SUSTAINABILITY(2023)

Cited 0|Views13
No score
Abstract
In this paper, a single-tier beam-spring-damping system and a two-tier beam-spring-damping system are adopted to simulate the FT (fixed track) and FST (floating slab track) system, respectively. The tunnel is modeled as an infinitely long Euler-Bernoulli beam embedded in the layered saturated soil. By solving the governing equations of the saturated soil and employing the TRM (transmission and reflection matrices) method, the frequency response function of the tunnel-layered saturated soil model is obtained. Making use of the interaction between the tunnel and track systems, the track system is coupled with the tunnel-layered saturated ground model. The solutions for the dynamic response of the track system-tunnel-layered saturated ground model under moving loads in the time-space domain are obtained using the inverse Fourier integral transform. To evaluate the damping effect of the FST system on the vibration of tunnel and soil, four damping coefficients are defined and the vibration results of the FT system-tunnel-layered saturated soil model are compared with those of the FST system-tunnel-layered saturated soil under different moving loads and soil conditions. The numerical results show that both the vibration displacement and acceleration amplitude are attenuated after using the FST system, and the damping coefficient of acceleration is about 30% greater than that of the displacement. In addition, the damping effect of the FST system on the ground surface vibration is associated with the embedded depth of the tunnel and the soil stiffness.
More
Translated text
Key words
FST system,layered saturated ground,tunnel,surface vibration,damping effect
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined