Voltage-Based Strategies for Preventing Battery Degradation under Diverse Fast-Charging Conditions

ACS ENERGY LETTERS(2023)

引用 0|浏览7
暂无评分
摘要
Maintaining safe operating conditions is a key challenge for high-performance lithium-ion battery applications. The lithium-plating reaction remains a risk during charging, but limited studies consider the highly variable charging conditions possible in commercial cells. Here we combine pseudo-2D electrochemical modeling with data visualization methods to reveal important relationships between the measurable cell voltage and difficult-to-predict Li-plating onset criteria. An extensively validated model is used to compute Li plating for thousands of multistep charging conditions spanning diverse rates, temperatures, states-of-charge, and cell aging. We observe an empirical cell operating voltage limit below which plating does not occur across all conditions, and this limit varies with the battery state-of-charge and aging. A model sensitivity analysis also indicates that, when comparing two charging voltage profiles, the capacity difference at 4.0 V correlates well with the difference in the plating onset capacity. These results encourage simple strategies for Li-plating prevention that are complementary to existing battery controls.
更多
查看译文
关键词
battery degradation,voltage-based,fast-charging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要