Background determination for the LUX-ZEPLIN dark matter experiment

J. Aalbers,D. S. Akerib,A. K. Al Musalhi,F. Alder,S. K. Alsum,C. S. Amarasinghe,A. Ames,T. J. Anderson,N. Angelides,H. M. Araujo,J. E. Armstrong,M. Arthurs,A. Baker,J. Bang,J. W. Bargemann,A. Baxter,K. Beattie,P. Beltrame,E. P. Bernard,A. Bhatti,A. Biekert,T. P. Biesiadzinski,H. J. Birch,G. M. Blockinger,B. Boxer,C. A. J. Brew,P. Bras,S. Burdin,M. Buuck,R. Cabrita,M. C. Carmona-Benitez,C. Chan,A. Chawla,H. Chen, A. P. S. Chiang,N. I. Chott,M. V. Converse,A. Cottle,G. Cox,O. Creaner,C. E. Dahl,A. David,S. Dey,L. de Viveiros,C. Ding,J. E. Y. Dobson,E. Druszkiewicz,S. R. Eriksen,A. Fan,N. M. Fearon,S. Fiorucci,H. Flaecher,E. D. Fraser,T. Fruth,R. J. Gaitskell,J. Genovesi,C. Ghag,R. Gibbons,M. G. D. Gilchriese,S. Gokhale,J. Green,M. G. D. van der Grinten,C. B. Gwilliam,C. R. Hall,S. Han,E. Hartigan-O'Connor,S. J. Haselschwardt,S. A. Hertel,G. Heuermann,M. Horn,D. Q. Huang,D. Hunt,C. M. Ignarra,R. G. Jacobsen,O. Jahangir,R. S. James,J. Johnson,A. C. Kaboth,A. C. Kamaha,D. Khaitan,I. Khurana,R. Kirk,D. Kodroff,L. Korley,E. V. Korolkova,H. Kraus,S. Kravitz,L. Kreczko,B. Krikler,V. A. Kudryavtsev,E. A. Leason,J. Lee,D. S. Leonard,K. T. Lesko,C. Levy,J. Lin,A. Lindote,R. Linehan,W. H. Lippincott,X. Liu,M. I. Lopes,E. Lopez Asamar,B. Lopez Paredes,W. Lorenzon,C. Lu,S. Luitz,P. A. Majewski,A. Manalaysay,R. L. Mannino,N. Marangou,M. E. Mccarthy,D. N. Mckinsey,J. Mclaughlin,E. H. Miller,E. Mizrachi,A. Monte,M. E. Monzani,J. D. Morales Mendoza,E. Morrison,B. J. Mount,M. Murdy,A. St. J. Murphy,D. Naim,A. Naylor,C. Nedlik,H. N. Nelson,F. Neves,A. Nguyen,J. A. Nikoleyczik,I. Olcina,K. C. Oliver-Mallory,J. Orpwood,K. J. Palladino,J. Palmer,N. Parveen,S. J. Patton,B. Penning,G. Pereira,E. Perry,T. Pershing,A. Piepke,D. Porzio,S. Poudel,Y. Qie,J. Reichenbacher,C. A. Rhyne,Q. Riffard,G. R. C. Rischbieter,H. S. Riyat,R. Rosero,P. Rossiter,T. Rushton,D. Santone,A. B. M. R. Sazzad,R. W. Schnee,S. Shaw,T. Shutt,J. J. Silk,C. Silva,G. Sinev,R. Smith,M. Solmaz,V. N. Solovov,P. Sorensen,J. Soria,I. Stancu,A. Stevens,K. Stifter,B. Suerfu,T. J. Sumner,N. Swanson,M. Szydagis,R. Taylor,W. C. Taylor,D. J. Temples,P. A. Terman,D. R. Tiedt,M. Timalsina,Z. Tong,D. R. Tovey,J. Tranter,M. Trask,M. Tripathi,D. R. Tronstad,W. Turner,U. Utku,A. C. Vaitkus,A. Wang,J. J. Wang,W. Wang,Y. Wang,J. R. Watson,R. C. Webb,T. J. Whitis,M. Williams,F. L. H. Wolfs,S. Woodford,D. Woodward,C. J. Wright, Q. Xia,X. Xiang,J. Xu,M. Yeh

PHYSICAL REVIEW D(2023)

Cited 0|Views47
No score
Abstract
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2 x 10-48 cm2 for the spin-independent interaction of a 36 GeV/c2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was (6.3 & PLUSMN; 0.5) x 10-5 events/keVee/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment.
More
Translated text
Key words
lux-zeplin
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined