Balancing and Therapeutic Roles of CXCR4-Inhibiting Nanomedicine via Synergetic Regulation of Hepatic Stellate Cells and Extracellular Matrix in Liver Injury

CHINESE JOURNAL OF CHEMISTRY(2023)

引用 0|浏览4
暂无评分
摘要
Inflammation is associated with different stages of liver disease, including acute injury, fibrosis, cirrhosis, and hepatoma. During the progression of liver inflammation, activation of hepatic stellate cells (HSCs) and extracellular matrix (ECM) deposition are critical pathologies, and thus the combined therapy using HSCs and ECM as targets represents a promising strategy in the treatment of liver injury. Here, a novel CXCR4-inhibiting nanomedicine that can simultaneously deliver AMD3100 (CXCR4 antagonist) and siPAI-1 (siRNA of plasminogen activator inhibitor-1) was designed and developed to reverse liver fibrosis by inhibiting HSCs activation and degrading ECM deposition. With this goal in mind, a Zn(II) coordinated polymeric AMD3100 named PAMD/Zn polymer with siRNA delivery and CXCR4 antagonism capabilities was synthesized. Overall, our results suggest that PAMD/Zn recruits pro-inflammatory cells for fibrogenesis and inhibits the activation of HSCs for fibrolysis at various stages of liver injury. Its use in conjunction with PAI-1 silencing achieved satisfactory therapeutic efficacy in liver injury and fibrosis. The derivative CXCR4-inhibiting nanomedicine is a versatile platform that offers valuable benefits for the treatment of liver diseases.
更多
查看译文
关键词
AMD3100,siRNA delivery,CXCR4-inhibiting,Liver injury,Functional polymers,Combined therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要