[18F]LW223 has low non-displaceable binding in murine brain, enabling high sensitivity TSPO PET imaging

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM(2024)

引用 0|浏览2
暂无评分
摘要
Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [F-18]LW223, in mice and specifically assess its volume of non-displaceable binding (V-ND) in brain as well as investigate the use of simplified analysis approaches for quantification of [F-18]LW223 PET data. Adult male mice were injected with [F-18]LW223 and varying concentrations of LW223 (0.003-0.55 mg/kg) to estimate VND of [F-18]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [F-18]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (similar to 15-20%). The 2-tissue compartment model provided the best fit for [F-18]LW223 PET data, although its correlation with SUV90-120min or V-Tapp allowed for [F-18]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [F-18]LW223 has the required properties to become a successful TSPO PET radiotracer.
更多
查看译文
关键词
[F-18]LW223,PET,TSPO,VND,brain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要