Modulating oxygen vacancy concentration for selective growth of semiconducting single-walled carbon nanotubes with narrow diameters

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY(2024)

引用 0|浏览1
暂无评分
摘要
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with narrow diameters are promising for future applications in many fields, especially in nanoelectronics and optoelectronics. In this study, the oxygen vacancy concentration modulating strategy was utilized for growing narrow diameters s-SWCNTs by the chemical vapor deposition (CVD) method. The Fe0.01Mg0.99O solid solution based catalyst was synthesized to anchor the Fe particles and inhibit aggregation for growing SWCNTs with uniform diameters. CeO2 was introduced into the catalyst to provide oxygen vacancies through H 2 prereduction. These oxygen vacancies could form an oxidative environment during the growth of SWCNTs, and the chemically active metallic carbon nanotube caps are selectively etched away under this environment. The Fe/Ce molar ratio and H 2 prereduction time were optimized to modulate the oxygen vacancy concentration. Ultimately, using the Fe0.01Mg0.99O/CeO2(3) catalyst with 10 min of H 2 prereduction time, high purity s-SWCNTs with diameters ranging from 1.41 to 1.71 nm and a content of 95.1% were obtained with high selectivity and carbon yield (1.33 wt%). The mechanism behind this phenomenon was elucidated through experimental characterizations and first-principle simulations, further expanding the understanding of the growth of s-SWCNTs through the modulation of oxygen vacancy concentration.& COPY; 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
更多
查看译文
关键词
Semiconducting single -walled carbon,nanotubes,Oxygen vacancy concentration,Fe 0.01 Mg 0.99 O/CeO 2 catalyst
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要