Enhancing catalytic performance of Fe-based metallic glasses by selective laser melting and electrochemical dealloying

JOURNAL OF MANUFACTURING PROCESSES(2023)

Cited 0|Views15
No score
Abstract
Herein, a Fenton-like catalyst with hierarchical porous structure for the degradation of azo dye with no illumination is reported. Selective laser melting (SLM) fabrication method and electrochemical dealloying are used to enhance degradation efficiency. Even in the absence of light, the degradation efficiency can reach 0.062 (k, reaction kinetic constant) and the durability of catalysts is good. Various properties of the SLM-produced porous metallic glass (SPMG) catalysis, such as the amorphous phase fraction and relaxation, which not only affect the degradation efficiency of the catalyst, but also the dealloying process of the catalyst. To investigate this issue, a series of SLM experiments and electrochemical experiments were performed. The result showed that crystallization occurs during electrochemical dealloying, and more pronounced ligaments and less 'Grain Region' on the surface of high initial amorphous fraction SPMG than the one of low initial amorphous fracion, indicating that the structure of the precursor alloy affects the final formation of the nano-porous structure. Subsequently, more pronounced ligaments and less 'Grain Region' result in greater catalytic. However, the 'Grain Region' in SPMG with a low initial amorphous fraction is not decrease and its azo catalytic ability deteriorates even when electrochemical dealloying was extended to 6 h.
More
Translated text
Key words
Metallic glass,Selective laser melting,Three-dimension porous architecture,Dealloying,Catalytic performance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined