Leaf Area Duration and Crop Radiation Use Efficiency Determine Biomass Yield of Lignocellulosic Perennial Grasses under Different Soil Water Content

AGRONOMY-BASEL(2023)

引用 0|浏览3
暂无评分
摘要
The aim of the present work was to assess the leaf area duration (LAD) and the radiation use efficiency (RUE) of six warm-season perennial biomass grasses (PBGs) in a two-year field trial in the semiarid Mediterranean climate under different soil water availability. Two ecotypes of giant reed (Arundo donax L., ARCT and ARMO), one ecotype of African fodder cane (Saccharum spontaneum L. subsp. aegyptiacum (Willd.) Hack., SAC) and three hybrids of Miscanthus (the commercial M. x giganteus J.M. Greef, Deuter ex Hodk., Renvoize, M x G, and two new seed-based hybrids, GNT9 and GNT10) were compared under three levels of soil water availability: rainfed, 50% and 100% of maximum crop evapotranspiration (ETm) restoration. The determination of RUE of perennial plants is controversial and has led to contrasting results in past studies. In the present work, LAD and RUE differed among crops and irrigation regimes, being positively affected by supplemental water inputs. SAC, ARCT and ARMO showed both high LAD and RUE, which determined the high biomass yield than both the commercial M x G and the improved Miscanthus hybrids GNT9 and GNT10. RUE was particularly high and less affected by soil water availability during the mid-season, while the effect of irrigation and the differences among the genotypes were larger during the late season. Adequate biomass yield can be achieved by sub-optimal soil water availability, thus reducing the water footprint and increasing the sustainability of these biomass perennial grasses selected for the Mediterranean climate.
更多
查看译文
关键词
lignocellulosic perennial grasses,biomass,crop
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要