The Interaction between Strigolactone and Auxin Results in the Negative Effect of Shading on Soybean Branching Development

AGRONOMY-BASEL(2023)

引用 0|浏览3
暂无评分
摘要
The plant architecture of higher plants is regulated through environmental and genetic factors, as well as phytohormones. Phytohormones play a critical role in regulating shoot branching. We determined the branching phenotype of D16 and N99-6, the content of strigolactones, the genetic expression level, and the interaction between auxin and strigolactones. We found that the branching development of the two soybean varieties under shading was significantly slower than that under normal light. The average branch length of N99-6 decreased by 40.9% after shading; however, the branch length of D16 was not significantly affected. Meanwhile, the branch formation rate in D16 was significantly higher than in N99-6. In addition, after shading treatment, the content of strigolactones in D16 and N99-6 axillary buds increased significantly, and the expression of phytochrome genes, PhyA and PhyB, showed opposite changes. However, strigolactone synthesis gene GmMAX4 and signal transduction gene GmMAX2 expression levels of D16 were lower than those of N99-6 after 24 h of shading. In addition, the application of strigolactone inhibitor TIS108 and auxin inhibitor NPA to soybean had no significant effect on the branch phenotype. The expression of the GmMAX2 gene was significantly up-regulated after the external application of the auxin analog, and the expression of auxin transporter gene GmPINI was significantly down-regulated after external application of the strigolactone analog under shade. In this study, we investigated the adverse effect of shade on soybean branching development, which may be due to the interaction of strigolactones with auxins.
更多
查看译文
关键词
auxin results,strigolactone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要