谷歌浏览器插件
订阅小程序
在清言上使用

Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law

Shizhe Li,Zhaofeng Wang

ENERGIES(2023)

引用 0|浏览2
暂无评分
摘要
In the process of working face mining, the permeability of the coal seam and the crack evolution characteristics of overlying strata are very important for efficient gas drainage. In this study, the distribution characteristics of the stress field and crack field in the working face and their relations are analyzed mainly by 3DEC numerical simulation. Furthermore, combined with the on-site measurement of coal seam stress, gas pressure, and gas seepage in front of the working face and the gas seepage in overlying strata before and after mining, the coupling effect of stress field and gas field and the law of gas migration and distribution in the working face are deeply explored. The results show that the changing trend of gas seepage and gas pressure is controlled by the stress change of the working face, and with the increase of stress, gas pressure and gas seepage also increase. The peak position of gas pressure is the farthest from the coal wall, about 22.5 similar to 25 m, followed by the peak of stress and gas seepage. When the permeability of coal and rock mass increases, the gas seepage increases and the gas pressure decreases. The coal seam stress and gas seepage in the working face and gas seepage in the overlying strata fracture zone along the tailgate side are generally greater than those on the headgate side, but the gas pressure is the opposite. Mining cracks and strata separation provide a good channel and space for gas migration and accumulation. Along the strike and tendency of the working face, gas is mainly concentrated in the overlying strata crack space above the separation zone and the roof and overlying strata crack space on the side of the tailgate, respectively. Based on this, the directional borehole gas drainage technology and borehole layout scheme in the fractured zone are put forward, which effectively reduce the gas concentration in the working face by 30 similar to 36%.
更多
查看译文
关键词
gas field,stress field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要