Global Navigation Satellite Systems disciplined oscillator synchronisation of multistatic radar

IET RADAR SONAR AND NAVIGATION(2024)

引用 0|浏览3
暂无评分
摘要
A fundamental challenge in the practical implementation of multistatic radar systems (MSRS) is the requirement for precise time and frequency synchronisation between the spatially separated radar nodes. The authors evaluate the performance of different classes of commercially available Global Navigation Satellite Systems (GNSS) timing receivers, Local Oscillators (LO) and GNSS Disciplined Oscillators (GNSSDOs) to determine the limitations of using one-way GNSS Time and Frequency Transfer (TFT) in this application. From evaluating the performance of three pairs of GNSSDOs, it is concluded that one-way GNSS TFT will likely be suitable only for the synchronisation of fully spatially coherent MSRS with carrier frequencies up to 100 MHz and waveform bandwidths up to 20 MHz. Whereas, in the case of short-term spatially coherent MSRS, synchronisation of systems with carrier frequencies up to a few GHz and waveform bandwidths of over 100 MHz will likely be possible. The performance of the different classes of GNSSDOs during GNSS denial (holdover) are evaluated, where it is concluded that frequency offsets between LOs at the point of GNSS denial will often significantly contribute, or even dominate, the holdover performance. Analysis of two practical multistatic radar measurements verifies the function of using the GNSSDOs for wireless synchronisation of the ARESTOR MSRS. The authors evaluate the suitability of one-way GNSS time and frequency transfer for different classes of multistatic radar systems. Calibration of a GNSS disciplined oscillator based synchronisation system for wireless synchronisation of an RFSoC based radar is presented, before a series of practical multistatic measurements captured during field trials are analysed.image
更多
查看译文
关键词
distributed sensors,multistatic radar,oscillators,radar detection,sensor fusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要