Cross-scale process quality control of variable polarity plasma arc welding based on predefined temperature field

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2023)

Cited 5|Views6
No score
Abstract
This study investigates the underlying causes of Variable Polarity Plasma Arc Welding (VPPAW) spatial positional instability and its adverse impact on weld seam quality. Microstructural analysis reveals that the primary cause of poor transverse mechanical properties is the asymmetric distribution of grains. Through the study of heat and mass transfer in the molten pool, it was found that the asymmetric flow of molten metal under the influence of gravity is the main factor leading to uneven temperature distribution and asymmetric grain distribution in the weld pool. A novel approach based on a predefined temperature field is proposed to regulate the weld pool's stability and welding quality. The implementation of the predefined temperature field effectively improves VPPAW weld pool flow, leading to enhanced temperature distribution and grain size and distribution. These findings provide a theoretical foundation and valuable engineering recommendations for achieving high-quality spatial position welding in VPPAW.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
More
Translated text
Key words
plasma,arc,quality control,cross-scale
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined