Chrome Extension
WeChat Mini Program
Use on ChatGLM

UV-converted heterogeneous wettability surface for the realization of printed micro-scale conductive circuits

FLEXIBLE AND PRINTED ELECTRONICS(2023)

Cited 0|Views16
No score
Abstract
Achieving high precision in the fabrication of electronic circuits through additive manufacturing requires breaking the resolution limit of traditional printing processes. To address this challenge, we have developed a novel approach that involves preparing a heterogeneous wetting surface using a light-sensitive NBE-acrylate resin. By creating differences in surface energy on the substrate, we can limit the spread of the ink and surpass the limitations of conventional processes, achieving a printing resolution of 5 mu m. The NBE-acrylate resin can be cross-linked under white LED light illumination (with lambda > 400 nm) to yield a hydrophobic surface, which can be converted to a hydrophilic surface by UV light illumination (lambda = 254 nm). The photochemical reaction of the NBE-acrylate resin under different light irradiation was confirmed by Fourier transform infrared spectroscopy (FTIR) and atomic force microscope (AFM) microforce measurements. In combination with a photomask, patterned heterogeneous wettability surfaces were prepared, which can be utilized for printing precision electronic circuits. Micrometer-scale printed circuits with a low line-to-space (L/S) of 5/50 and 10/10 mu m were successfully achieved by optimizing the ink formulation, which is significantly beyond the printing resolution. In the end, fully printed thin film transistor arrays based on semi-conducting carbon nanotubes were achieved, which showed higher charge carrier mobilities of 1.89-4.31 cm(2) s(-1) V-1 depending on the channel width, demonstrating the application of this precision printed technique.
More
Translated text
Key words
heterogeneous wettability surface,uv-converted,micro-scale
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined