The Influence of Hydrogen Bonds on the Roaming Reaction

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2023)

Cited 0|Views1
No score
Abstract
Roaming bypasses the conventional transition state and is a significant reaction pathway due to the unusual energy distributions of its products; however, its reaction pathway under external environmental interactions remains unclear. Herein, we report for the first time the roaming process of nitrobenzene, which is influenced by the hydrogen bonds (H-bonds) between nitro- and phenyl radicals and water molecules in the gas phase. Notably, despite the fact that the single water structure produces a higher but narrower barrier, whereas the double water structure leads to a lower but wider barrier, the roaming reaction still occurs. The underlying mechanism responsible for these influences of H-bonds is ascribed to the dramatically changed polarization and correlation interactions between the roaming radicals. The reaction rates and thermal perturbation probabilities are also remarkably influenced due to the presence of the H-bonds, by approximately 2 orders of magnitude. It is anticipated that this work will encourage the promising feasibility of introducing environmental molecules to modulate the roaming reaction.
More
Translated text
Key words
hydrogen bonds,reaction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined