The increased Diels–Alder reactivity of umpolung tropone: analysis of individual atoms and bonds using QTAIM and IQA along complete IRC paths

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY(2023)

引用 0|浏览1
暂无评分
摘要
A fruitful debate took place recently in literature, discussing the enhanced Diels-Alder reactivity of tropone derivatives for which the carbonyl polarity was reversed by means of umpolung. Karas et al. sustained that the umpolung increases the antiaromatic character of the ring, affecting the highest occupied molecular orbital (HOMO)/least unoccupied molecular orbital (LUMO) energies, speeding up the reaction. Tiekink et al. challenged this interpretation by sustaining that the asynchronicity of the reaction mechanisms, rather than orbital energy perturbation, was the main responsible for the smaller reaction barriers. We shed light on this dispute by computing full interaction quantum atom (IQA) and quantum theory of atoms in molecules (QTAIM) analyses over complete intrinsic reaction coordinate (IRC) paths for the Diels-Alder reaction of tropone and its umpolung derivatives, using the same systems studied by Karas et al. and Tiekink et al. Our results confirm that the asynchronicity is indeed very high for those reactions with smaller reaction barriers and offer an atom-by-atom and bond-by-bond analysis of the entire IRC pathways. Even though asynchronicity and lower reactions barriers seem to be related, antiaromaticity and lower barriers are related as well, but discussing both these interpretations does not necessarily require arguments on HOMO/LUMO energies to be invoked. The IQA@IRC protocol enables us to see, in a much deeper detail, how the energy of each atom or group is varying along the IRC. It acts like a magnifying glass, allowing us to see things that are unreachable from the standard IRC analysis. image
更多
查看译文
关键词
Diels–Alder,IQA,IRC,QTAIM,umpolung
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要