The impacts of land-use and climate change on the Zoige peatland carbon cycle: A review

WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE(2024)

引用 0|浏览12
暂无评分
摘要
The Zoige peatlands are the largest peatland area in China, and the largest high-altitude peatland in the world. As with many peatlands worldwide, degradation from land management and climate change mean that the intact Zoige peatland area has decreased, potentially reducing the carbon (C) sink function and ecosystem services. This review summarizes current knowledge of the impacts of land-use and climate change on the Zoige peatland C cycle in a global perspective and identifies future research and management directions. The existing literature suggests that artificial drainage carried out to lower water tables and improve grazing has a significant impact on the peatland C cycle. Drained and degraded areas may act as a net C source, through increased CO2 emissions, although the overall C balance of the Zoige peatlands is likely still a net C sink. Future climate change may also impact upon the peatland C cycle. Warming of 2(degrees)C may significantly reduce the strength of the C sink of intact peatland areas, which may shift the overall Zoige peatland C cycle balance to a net C source. The effect of warming on degraded Zoige peatlands is a major uncertainty, although the global literature suggests warming effects may be greater in degraded peatlands. Restoration of degraded peatlands (by blocking drains) may help reverse some of the impacts of degradation and gradually recover C sink function. However, there are fewer studies in Zoige peatlands than elsewhere. We conclude with several specific suggestions for future research on the peatland C cycle.This article is categorized under:Paleoclimates and Current Trends > Modern Climate ChangeAssessing Impacts of Climate Change > Observed Impacts of Climate ChangeClimate, Ecology, and Conservation > Observed Ecological Changes
更多
查看译文
关键词
climate warming,net ecosystem carbon balance (NECB),peatland degradation,water table lowering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要