Synthetically tunable polymers, free volume element size distributions, and dielectric breakdown field strengths

MATERIALS TODAY(2023)

引用 2|浏览14
暂无评分
摘要
Four polyetherimide (PEI) polymers were synthesized with different end groups, while leaving the molecular weights, glass transition temperature, thermal properties, and dielectric constant essentially unchanged. The Restricted Orientation Anisotropy Method (ROAM), an ultrafast infrared laser technique, was used to measure the films' free volume elements (FVEs) radius probability distribution (RPD) curves. This technique exploits the observation that a vibrational probe's molecular reorientation dynamics inside a polymer film's FVEs are sterically restricted by the surfaces of the FVEs. The measured RPD curves displayed significant changes in shape and center positions for the PEI polymers with different end cap. The results demonstrate that structural changes to the end groups of a polymer can significantly modify its microscopic morphology, which is consistent with other experiments that observed changes in macroscopic observables. The thin film samples' breakdown fields (EBD) were measured, and a correlation between polymer films having a higher probability of large FVEs and lower EBDs was observed. This work demonstrates that the nanoscopic chain packing structure that controls the nature of the FVEs and breakdown field properties of PEI are synthetically tunable, without the need to change the main chain chemical structure. The results provide some experimental evidence for the theoretical model of electron-acceleration inside FVEs as the microscopic origin of polymer film dielectric breakdown. The results also provide a framework for the study of other polymer dielectrics, and suggest that design of high breakdown field polymer films may involve minimizing FVE sizes, particularly the large FVE tails of the size distribution.
更多
查看译文
关键词
Polyetherimide,Dielectric breakdown,Polymer free volume,Ultrafast infrared spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要