Enhancing Glycosylation of Flavonoids by Engineering the Uridine Diphosphate Glucose Supply in Escherichia coli

Journal of agricultural and food chemistry(2023)

引用 0|浏览2
暂无评分
摘要
Glycosylation can enhance the solubility and stability of flavonoids. The main limitation of the glycosylation process is low intracellular uridine diphosphate glucose (UDPG) availability. This study aimed to create a glycosylation platform strain in Escherichia coli BL21-(DE3) by multiple metabolic engineering of the UDPG supply. Glycosyltransferase TcCGT1 was introduced to synthesize vitexin and orientin from apigenin and luteolin, respectively. To further expand this glycosylation platform strain, not only were UDP rhamnose and UDP galactose synthesis pathways constructed, but rhamnosyltransferase (GtfC) and galactosyltransferase (PhUGT) were also introduced, respectively. In a 5 L bioreactor with apigenin, luteolin, kaempferol, and quercetin as glycosyl acceptors, vitexin, orientin, afzelin, quercitrin, hyperoside, and trifolin glycosylation products reached 17.2, 36.5, 5.2, 14.1, 6.4, and 11.4 g/L, respectively, the highest titers reported to date for all. The platform strain has great potential for large-scale production of glycosylated flavonoids.
更多
查看译文
关键词
vitexin,orientin,UDPG,metabolicengineering,glycosylation platform
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要