Chrome Extension
WeChat Mini Program
Use on ChatGLM

Development of artificial intelligence-based slow-motion echocardiography and clinical usefulness for evaluating regional wall motion abnormalities

The International Journal of Cardiovascular Imaging(2024)

Cited 0|Views16
No score
Abstract
The diagnostic accuracy of exercise stress echocardiography (ESE) for myocardial ischemia requires improvement, given that it currently depends on the physicians’ experience and image quality. To address this issue, we aimed to develop artificial intelligence (AI)-based slow-motion echocardiography using inter-image interpolation. The clinical usefulness of this method was evaluated for detecting regional wall-motion abnormalities (RWMAs). In this study, an AI-based echocardiographic image-interpolation pipeline was developed using optical flow calculation and prediction for in-between images. The accuracy for detecting RWMAs and image readability among 25 patients with RWMA and 25 healthy volunteers was compared between four cardiologists using slow-motion and conventional ESE. Slow-motion echocardiography was successfully developed for arbitrary time-steps (e.g., 0.125×, and 0.5×) using 1,334 videos. The RWMA detection accuracy showed a numerical improvement, but it was not statistically significant (87.5% in slow-motion echocardiography vs. 81.0% in conventional ESE; odds ratio: 1.43 [95% CI: 0.78–2.62], p = 0.25). Interreader agreement analysis (Fleiss’s Kappa) for detecting RWMAs among the four cardiologists were 0.66 (95%CI: 0.55–0.77) for slow-motion ESE and 0.53 (95%CI: 0.42–0.65) for conventional ESE. Additionally, subjective evaluations of image readability using a four-point scale showed a significant improvement for slow-motion echocardiography (2.11 ± 0.73 vs. 1.70 ± 0.78, p < 0.001).In conclusion, we successfully developed slow-motion echocardiography using in-between echocardiographic image interpolation. Although the accuracy for detecting RWMAs did not show a significant improvement with this method, we observed enhanced image readability and interreader agreement. This AI-based approach holds promise in supporting physicians’ evaluations.
More
Translated text
Key words
Artificial intelligence,Deep learning,Stress echocardiography,Regional wall motion abnormality,Ischemic heart disease
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined