A Thin-film Reconfigurable SiC Thermal Test Chip for Reliability Monitoring in Harsh Environments

2023 IEEE 73RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC(2023)

引用 0|浏览3
暂无评分
摘要
Wide bandgap (WBG) semiconductor technologies enable significant progress in the emergence of power modules. Power cycling at elevated temperatures causes crack or delamination failure, especially at the die-attached bonded interface in the long term. Therefore, the in-situ reliability investigation of power modules, materials, and semiconductor packages is of great significance for modern industries. The silicon carbide's higher bandgap energy, intrinsic thermal conductivity, and mechanical strength make it a great candidate for the next generation of semiconductor, designed to operate in harsh conditions. In this study, a thin-film reconfigurable silicon carbide (SiC) thermal test chip (TTC) is designed and fabricated for reliability assessment in harsh environments. The proposed TTC realizes in-situ power/thermal cycling tests at elevated temperatures as well as characterization of novel materials such as nanoparticle-based sintering materials in die-attach technology and high-temperature-compatible epoxy molding compounds. The chip is equipped with thin-film platinum microheaters to realize modular power mappings, and platinum resistive temperature detectors (RTD) to examine the thermal reliability by monitoring the precise changes of the internal junction-to-case thermal resistance.
更多
查看译文
关键词
Wide bandgap semiconductor technology, power modules, die-attach, in-situ reliability investigation, bandgap energy, thermal conductivity, power cycling, nanoparticle-based sintering, resistive temperature detectors, junction-to-case thermal resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要