Evolutionary flexibility and rigidity in the bacterial methylerythritol phosphate (MEP) pathway

Bailey Marshall, Kaustubh Amritkar,Michael Wolfe,Betul Kacar,Robert Landick

FRONTIERS IN MICROBIOLOGY(2023)

引用 0|浏览2
暂无评分
摘要
Terpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron-sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron-sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.
更多
查看译文
关键词
isoprenoid biosynthesis,terpenoid biosynthesis,metabolic engineering,synthetic biology,comparative genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要