Chrome Extension
WeChat Mini Program
Use on ChatGLM

Phonetic Error Analysis Beyond Phone Error Rate.

IEEE ACM Trans. Audio Speech Lang. Process.(2023)

Cited 0|Views6
No score
Abstract
In this article, we analyse the performance of the TIMIT-based phone recognition systems beyond the overall phone error rate (PER) metric. We consider three broad phonetic classes (BPCs): {affricate, diphthong, fricative, nasal, plosive, semi-vowel, vowel, silence}, {consonant, vowel, silence} and {voiced, unvoiced, silence} and, calculate the contribution of each phonetic class in terms of the substitution, deletion, insertion and PER. Furthermore, for each BPC we investigate the following: evolution of PER during training, effect of noise (NTIMIT), importance of different spectral subbands (1, 2, 4, and 8 kHz), usefulness of bidirectional vs unidirectional sequential modelling, transfer learning from WSJ and regularisation via monophones. In addition, we construct a confusion matrix for each BPC and analyse the confusions via dimensionality reduction to 2D at the input (acoustic features) and output (logits) levels of the acoustic model. We also compare the performance and confusion matrices of the BLSTM-based hybrid baseline system with those of the GMM-HMM based hybrid, Conformer and wav2vec 2.0 based end-to-end phone recognisers. Finally, the relationship of the unweighted and weighted PERs with the broad phonetic class priors is studied for both the hybrid and end-to-end systems.
More
Translated text
Key words
Phone recognition,TIMIT,phonetic error analysis,broad phonetic classes,confusion matrix,hybrid,end-to-end
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined