Watching (De)Intercalation of 2D Metals in Epitaxial Graphene: Insight into the Role of Defects

SMALL(2024)

引用 0|浏览10
暂无评分
摘要
Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 +/- 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation. Ag (2D) and 2D Ga are initially intercalated into epitaxial graphene, and the de-intercalation processes are markedly different from each other as followed by photoemission electron microscopy. Molecular dynamic simulations and calculations provide insight into the role of the intercalant-they induce different interactions with (defective) graphene with implications to defect healing and kinetics of the (de)intercalation process.image
更多
查看译文
关键词
defects,dynamics,graphene,intercalation,molecular dynamics,photoemission electron microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要