Responses of submerged macrophytes to different particle size microplastics and tetracycline co-pollutants at the community and population level

JOURNAL OF HAZARDOUS MATERIALS(2024)

Cited 0|Views7
No score
Abstract
Microplastics (MPs) and antibiotics are ubiquitous in aquatic ecosystems, and their accumulation and combined effects are considered emerging threats that may affect biodiversity and ecosystem function. The particle size of microplastics plays an important role in their combined effects with antibiotics. Submerged macrophytes are crucial in maintaining the health and stability of freshwater ecosystems. However, little is known about the combined effects of different particle size of MPs and antibiotics on freshwater plants, particularly their effects on submerged macrophyte communities. Thus, there is an urgent need to study their effects on the macrophyte communities to provide essential information for freshwater ecosystem management. In the present study, a mesocosm experiment was conducted to explore the effects of three particle sizes (5 mu m, 50 mu m, and 500 mu m) of polystyrene-microplastics (PSMPs) (75 mg/L), tetracycline (TC) (50 mg/L), and their co-pollutants on interactions between Hydrilla verticillata and Elodea nuttallii. Our results showed that the effects of MPs are size -dependent on macrophytes at the community level rather than at the population level, and that small and medium sized MPs can promote the growth of the two test macrophytes at the community level. In addition, macrophytes at the community level have a stronger resistance to pollutant stress than those at the population level. Combined exposure to MPs and TC co-pollutants induces species-specific responses and antagonistic toxic effects on the physio-biochemical traits of submerged macrophytes. Our study provides evidence that MPs and co-pollutants not only affect the morphology and physiology at the population level but also the interactions between macrophytes. Thus, there are promising indications on the potential consequences of MPs and copollutants on macrophyte community structure, which suggests that future studies should focus on the effects of microplastics and their co-pollutants on aquatic macrophytes at the community level rather than only at the population level. This will improve our understanding of the profound effects of co-pollutants in aquatic envi-ronments on the structure and behavior of aquatic communities and ecosystems.
More
Translated text
Key words
Microplastics,Tetracycline,Community and population level,Combined effects,Submerged macrophytes
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined