Cerebrovascular Segmentation in TOF-MRA with Topology Regularization Adversarial Model

MM '23: Proceedings of the 31st ACM International Conference on Multimedia(2023)

引用 0|浏览4
暂无评分
摘要
Time-of-flight magnetic resonance angiography (TOF-MRA) is a common cerebrovascular imaging. Accurate and automatic cerebrovascular segmentation in TOF-MRA images is an important auxiliary method in clinical practice. Due to the complex semantics and noise interference, the existing segmentation methods often fail to pay attention to topological correlation, resulting in the neglect of branch vessels and vascular topology destruction. In this paper, we proposed a topology regularization adversarial model for cerebrovascular segmentation in TOF-MRA images. Firstly, we trained a self-supervised model to learn spatial semantic layout in TOF-MRA images by image context restoration. Subsequently, we exploited initialization based on the self-supervised model and constructed an adversarial model to accomplish parameter optimization. Considering the limitations of uneven distribution of cerebrovascular classes, we introduced skeleton structures as discriminative features to enhance vessel topological strength. We constructed some latest models to test our method over two datasets. Results show that the proposed model attains the highest score. Therefore, our method can obtain accurate connectivity information and higher graph similarity, leading more meaningful clinical utility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要