Nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) with repercussions toward apoptosis, necrosis, and cancer necrosis factor (TNF-a) at nano-biointerfaces

Toxicology research(2023)

引用 0|浏览1
暂无评分
摘要
Introduction Apoptosis, necrosis, and cancer necrosis factor (TNF-a) are all impacted by the nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) at nano-biointerfaces. The creation of multi-functional nanoparticles has had a considerable impact on the transport of drugs and genes, nanotheranostics (in-vivo imaging, concurrent diagnostics), interventions for external healing, the creation of nano-bio interfaces, and the instigation of desired changes in nanotherapeutics.Objectives The quantitative structure-activity relationships, chemical transformations, biological interactions as well as toxicological analyses are considered as main objectives. Discrete dimensions of SCoNPs-cell interaction interfaces, their characteristic physical features (size, shape, shell structure, and surface chemistry), impact on cell proliferation and differentiation are the key factors responsible for nanotoxicity.Methods The development of multi-functional nanoparticles has been significant in drug/gene delivery, nanotheranostics (in-vivo imaging, coinciding diagnostics), and external healing interventions, designing a nano-bio interface, as well as inciting desired alterations in nanotherapeutics. Every so often, the cellular uptake of multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoONPs) influences cellular mechanics and initiates numerous repercussions (oxidative stress, DNA damage, cytogenotoxicity, and chromosomal damage) in pathways, including the generation of dysregulating factors involved in biochemical transformations.Results The concerns and influences of multifunctional SCoNPs on different cell mechanisms (mitochondria impermeability, hydrolysis of ATP, the concentration of Ca2+, impaired calcium clearance, defective autophagy, apoptosis, and necrosis), and interlinked properties (adhesion, motility, and internalization dynamics, role in toxicity, surface hydrophilic and hydrophobicity, biokinetics and biomimetic behaviors of biochemical reactions) have also been summarized. SCoONPs have received a lot of interest among the nanocarriers family because of its advantageous qualities such as biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity.Conclusion Various applications, such as bio-imaging, cell labeling, gene delivery, enhanced chemical stability, and increased biocompatibility, concerning apoptosis, necrosis, and nano-bio interfaces, along with suitable examples. In this analysis, the multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoNPs) intricacies (cytogenotoxicity, clastogenicity, and immunomodulatory), nanotoxicity, and associated repercussions have been highlighted and explained. Graphical AbstractSchematic illustration of different stages of cell apoptosis (clockwise, the initial process to the final stage), different, multifunctional unlike Co-built [Co, CoO, Co2 (CO)8 and Co3O4] nanoparticles (UCoNPs), apoptosome at center: the main component of apoptosis mechanism, and left side cells to reproduce necrosis stages.
更多
查看译文
关键词
nano-biointerfaces,bioavailability,biocompatibility,biodegradability,nanotoxicity,apoptosis,necrosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要