Buckling optimization of variable-stiffness composite plates via variable stiffness optimization algorithm

COMPOSITE STRUCTURES(2024)

引用 0|浏览19
暂无评分
摘要
A variable stiffness optimization (VSO) algorithm is presented for optimizing variable-stiffness composite (VSC) plates with linear fiber path functions. A new definition of lamination parameters characterizing the distances between stacking configurations of VSC plates is presented. Using the inherent sensitivity of bending stiffness of composite laminates, the concept of "through thickness design" is introduced. The first step is to determine a good initial point for the VSC plates using three-dimensional sampling optimization (3DSO). The fiber angle design variables are then categorized into three groups. By optimizing the three groups' design variables sequentially and iteratively, the stiffness of the VSC plates is stiffened part by part until an optimum is reached. Lastly, the obtained optimum is redesigned accounting for the curvature constraint. The finite element method (FEM) is developed for the buckling analysis of VSC plates, and both Q4 and Q8 elements are employed to verify the accuracy and convergence of the FEM. Under a variety of boundary conditions and loading cases, FEM and VSO algorithm are used to maximize the buckling load of square and rectangular symmetrical VSC plates. Optimal results are compared with those available in the literature, demonstrating the effectiveness, robustness, and efficiency of the VSO algorithm.
更多
查看译文
关键词
Variable stiffness optimization algorithm,Variable-stiffness composite plates,Lamination parameters,Through thickness design,Buckling,Finite element method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要