谷歌浏览器插件
订阅小程序
在清言上使用

Photocatalytic H2 O2 Generation Reaction with a Benchmark Rate at Air-Liquid-Solid Joint Interfaces.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 0|浏览2
暂无评分
摘要
The rapid charge recombination, low selectivity for two-electron oxygen reduction reaction (ORR), and limited O2 diffusion rate hinder the practical applications of photocatalytic H2 O2 generation. Herein, a triphase photocatalytic system in which the H2 O2 generation occurs at the air-liquid-solid joint interfaces is developed, using polymeric carbon nitride (PCN). The introduction of pyrrole units and cyano group into PCN can promote the activation of oxygen molecules and facilitate the spatial separation of HOMO and LUMO orbits, hence improving the charge carrier separation efficiency and enhancing the formation of H2 O2 . Importantly, the gas-liquid-solid triphase interface system allows for the rapid transport of oxygen from the air to the reaction interface, overcoming the low solubility and slow diffusion of oxygen in the water in conventional liquid reaction systems. The triphase system shows a benchmark H2 O2 generation rate over PCN-based materials in pure water (2063.21 µmol g-1 h-1 ), which is an approximate tenfold enhancement as compared to powder photocatalyst (215.44 µmol g-1 h-1 ). Simulation and electrochemical tests reveal that the rapid oxygen diffusion rate of triphase interface can promote charge separation and provide more O2 to generate H2 O2 . This work provides a promising strategy for constructing an efficient and sustainable H2 O2 production system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要