Chrome Extension
WeChat Mini Program
Use on ChatGLM

Lysozyme stability in various deep eutectic solvents using molecular dynamics simulations

Journal of biomolecular structure & dynamics(2023)

Cited 0|Views3
No score
Abstract
The ability of neat deep eutectic solvents (DESs) to influence protein structure and function has gained considerable interest due to the unstable nature of enzymes or therapeutic proteins, which are often exposed to thermal, chemical, or mechanical stresses when handled at an industrial scale. In this study, we simulated a model globular protein, lysozyme, in water and six choline chloride-based DES using molecular dynamics simulations, to investigate the structural changes in various solvent environments, giving insights into the overall stability of lysozyme. Root mean square deviation (RMSD) and root mean square fluctuations (RMSF) of the C-alpha backbone indicated that most DESs induced a less flexible and rigid lysozyme structure compared to water. The radius of gyration and end-to-end distance calculations pointed towards higher structural compactness in reline and levuline, while the structure of lysozyme considerably expanded in oxaline. Protein-solvent interactions were further analysed by hydrogen bonding interactions and radial distribution functions (RDF), which indicated a higher degree of lysozyme-hydrogen bond donor (HBD) interactions compared to lysozyme-choline hydrogen bonding. Surface area analysis revealed an overall % increase in total positive, negative, donor, and acceptor surface areas in malicine and oxaline compared to water and other DESs, indicating the exposure of a larger number of residues to interactions with the solvent. Reline, levuline, and polyol-based DESs comparatively stabilized lysozyme, even though changes in the secondary/tertiary structures were observed.Communicated by Ramaswamy H. Sarma
More
Translated text
Key words
deep eutectic solvents,various deep eutectic solvents,molecular dynamics simulations,molecular dynamics,lysozyme
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined