谷歌Chrome浏览器插件
订阅小程序
在清言上使用

High-efficient removal and adsorption mechanism of organic dyes in wastewater by KOH-activated biochar from phenol-formaldehyde resin modified wood

SEPARATION AND PURIFICATION TECHNOLOGY(2024)

引用 0|浏览3
暂无评分
摘要
The treatment of wastewater contaminated with organic dyes has become an intricate challenge in water pollution control. Currently, sophisticated chemical modifications and synthetic methods are frequently needed to enhance the adsorption capacity of biochar for removing dyes during the treatment process. In order to develop a facile, low-cost and efficient biochar absorbent, an activated biochar (KOH/PF-WB) was successfully synthesized from phenol-formaldehyde (PF) resin modified wood via pyrolysis and potassium hydroxide (KOH) activation. Based on the joint effect of PF resin and wood, KOH/PF-WB-700-2 exhibited a remarkable porous structure and abundant oxygen-containing functional groups, which resulted in a substantially high specific surface area (SBET = 2301.61 m2/g) and total pore volume (Vtotal = 1.205 cm3/g). Additionally, the PF resin modification led to increased disorder and more defect sites of activated wood biochar. As a result, KOH/PF-WB-700-2 demonstrated superior adsorption capacity for congo red (3472.22 mg/g) and methylene blue (1112.35 mg/g) dyes compared to some reported adsorbents. The adsorption process could be better described by the pseudo-second-order kinetic model and Langmuir isotherm model, while the overall process was spontaneous and feasible. The primary adsorption mechanism involved pore filling through the modulation of PF resin, along with the cooperative effects of electrostatic attraction, hydrogen bonding and pi-pi interaction. This finding provides a viable strategy for the waste PF-modified wood cyclic application, and offer technical support for the prospect of KOH/PF-WB for the removal of organic dyes.
更多
查看译文
关键词
PF-modified wood,Biochar,Dyes,Adsorption capacity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要