Unveiling APOL1 Haplotypes: A Novel Classification Through Probe-Independent Quantitative Real-Time PCR

bioRxiv : the preprint server for biology(2023)

引用 0|浏览9
暂无评分
摘要
Introduction Apolipoprotein-L1 (APOL1) is a primate-specific protein component of high- density lipoprotein (HDL). Two variants of APOL1 (G1 and G2), provide resistance to parasitic infections in African Americans but are also implicated in kidney-related diseases and transplant outcomes in recipients. This study aims to identify these risk variants using a novel probe- independent quantitative real-time PCR method in a high African American recipient cohort. Additionally, it aims to develop a new stratification approach based on haplotype-centric model. Methods Genomic DNA was extracted from recipient PBMCs using SDS lysis buffer and proteinase K. Quantitative PCR assay with modified forward primers and a common reverse primer enabled us to identify single nucleotide polymorphisms (SNPs) and the 6-bp deletion quantitatively. Additionally, we used sanger sequencing to verify our QPCR findings. Results Our novel probe-independent qPCR effectively distinguished homozygous wild-type, heterozygous SNPs/deletion, and homozygous SNPs/deletion, with at least 4-fold differences. High prevalence of APOL1 variants was observed (18% two-risk alleles, 34% one-risk allele) in our recipient cohort. Intriguingly, up to 12-month follow-up revealed no significant impact of recipient APOL1 variants on transplant outcomes. Ongoing research will encompass more time points and a larger patient cohort, allowing a comprehensive evaluation of G1/G2 variant subgroups categorized by new haplotype scores, enriching our understanding. Conclusions Our cost-effective and rapid qPCR technique facilitates APOL1 genotyping within hours. Prospective and retrospective studies will enable comparisons with long-term allograft rejection, potentially predicting early/late-stage transplant outcomes based on haplotype evaluation in this diverse group of kidney transplant recipients. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
apol1 haplotypes,probe-independent,real-time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要