Diffusion MRS tracks distinct trajectories of neuronal development in the cerebellum and thalamus of rat neonates.

bioRxiv (Cold Spring Harbor Laboratory)(2024)

引用 0|浏览15
暂无评分
摘要
It is currently impossible to non-invasively assess cerebellar cell structure during early development. Here we propose a novel approach to non-invasively and longitudinally track cell-specific development using diffusion-weighted magnetic resonance spectroscopy in combination with microstructural modelling. Tracking metabolite diffusion allows us to probe cell-specific developmental trajectories in the cerebellum and thalamus of healthy rat neonates from post-natal day (P) 5 to P30. Additionally, by comparing different analytical and biophysical microstructural models we can follow the differential contribution of cell bodies and neurites during development. The thalamus serves as a control region to assess the sensitivity of our method to microstructural differences between the regions. We found significant differences between cerebellar and thalamic metabolites diffusion properties. For most metabolites, the signal attenuation is stronger in the thalamus, suggesting less restricted diffusion compared to the cerebellum. There is also a trend for lower signal attenuation and lower ADCs with increasing age, suggesting increasing restriction of metabolite diffusion. This is particularly striking for taurine in the thalamus. We use biophysical modelling to interpret these differences. We report a decreased sphere fraction (or an increased neurite fraction) with age for taurine and total creatine in the cerebellum, marking dendritic growth. Surprisingly, we also report a U-shape trend for segment length (the distance between two embranchments in a dendritic tree) in the cerebellum agreeing with age-matching morphometry of openly available 3D-Purkinje reconstructions. Results demonstrate that diffusion-weighted MRS probes early cerebellar neuronal development non-invasively. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
neuronal development,diffusion mrs,cerebellum,thalamus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要