Optimizing SARS-CoV-2 Immunoassays for Specificity in Dengue-Co-Endemic Areas

CUREUS JOURNAL OF MEDICAL SCIENCE(2023)

引用 0|浏览10
暂无评分
摘要
IntroductionThe overlap in clinical presentation between COVID-19 and dengue poses challenges for diagnosis in co -endemic regions. Furthermore, there have been reports of antibody cross-reactivity between SARS-CoV-2 and dengue. Our research aims to evaluate SARS-CoV-2 antigens for serological testing while reducing the possibility of cross-reactivity with anti-dengue antibodies.MethodTwo hundred and ten serum samples were collected from 179 patients and divided into four panels. Panels 1 and 2 consisted of COVID-19-negative healthy donors (n=81) and pre-pandemic dengue patients (n=50), respectively. Alternatively, Panel 3 (n=19) was composed of reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-positive samples collected within two weeks of COVID-19 symptom onset, while Panel 4 (n=60) was composed of positive samples collected after two weeks of symptom onset. Previously developed and characterized in-house SARS-CoV-2 spike-1 (S1), receptor binding domain (RBD), and nucleocapsid (N) immunoglobin G (IgG)-enzyme-linked immunosorbent assay (ELISA) assays were used for the study.ResultsSix dengue-positive sera cross-reacted with the RBD of SARS-CoV-2. However, only one dengue-positive sera cross-reacted with the S1 and N proteins of SARS-CoV-2. Co-immobilization of S1 and RBD in different ratios revealed an 80:20 (S1:RBD) ratio as optimal for achieving an overall 96.2% sensitivity with the least cross-reaction to anti-dengue antibodies.ConclusionOur findings indicated that SARS-CoV-2 RBD-based immunoassays present more cross-reactivity with anti -dengue antibodies than S1 and N proteins. Furthermore, co-immobilization of S1 and RBD reduces the cross-reactivity with anti-dengue antibodies compared to RBD, thereby increasing the immunoassay specificity without affecting overall sensitivity for the dengue-endemic areas.
更多
查看译文
关键词
maximize,precision,dengue co-endemic areas,sensitivity specificity,elisa,immunoassay,spike protein,cross-reactivity,dengue,covid-19
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要