Laser assisted rapid 3D printing of continuous carbon fiber reinforced plastics: Simulation, characterization, and properties

Polymer Composites(2023)

Cited 1|Views0
No score
Abstract
Abstract 3D printing of continuous fiber reinforce plastics (CCFRP) with fused deposition modeling is a burgeoning manufacturing method because of its exceptional mechanical properties. Nevertheless, it cannot manufacture parts at high speeds. Using laser heating instead of the traditional resistive heating in 3D printing of CCFRP has the potential to improve printing speed owing to its high heating efficiency. In this article, a process of laser‐assisted rapid 3D printing of CCFRP is proposed. The heating process of CCFRP by laser is analyzed and verified. The linear relation between printing speed and laser power is established. The experiments demonstrate that the printing speed is increased to 30 mm/s with the laser. The mechanical properties of printed parts, though enhanced as the printing speed and laser power increase, are better than those obtained by traditional methods. Scanning electron microscope images and experiments reveal that proper laser power is conducive to the melting of plastics, strengthening interlayer bonding, and reducing voids under roller pressure. Nonetheless, excessive laser power ablates the plastic, resulting in increased voids.
More
Translated text
Key words
continuous carbon fiber,carbon fiber,plastics,printing,laser
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined