Reduced versus standard dose contrast volume for contrast-enhanced abdominal CT in overweight and obese patients using photon counting detector technology vs. second-generation dual-source energy integrating detector CT

European Journal of Radiology(2023)

引用 0|浏览11
暂无评分
摘要
Purpose: To compare image quality of contrast-enhanced abdominal-CT using 1st-generation Dual Source Photon-Counting Detector CT (DS-PCD-CT) versus 2nd-generation Dual-Source Energy Integrating-Detector CT (DS-EID-CT) in patients with BMI >= 25, applying two different contrast agent volumes, vendor proposed protocols and different virtual monoenergetic images (VMI).Method: 68 overweight (BMI >= 25 (kg)/(m)2) patients (median age: 65 years; median BMI 33.3 (kg)/(m)2) who underwent clinically indicated, portal-venous contrast-enhanced abdominal-CT on a commercially available 1st-generation DS-PCD-CT were prospectively included if they already have had a pre-exam on 2nd-generation DS-EID-CT using a standardized exam protocol. Obesity were defined by BMI-calculation (overweight: 25-29.9, obesity grade I: 30-34.9; obesity grade II: 35-39.9; obesity grade III: > 40) and by the absolute weight value. Body weight adapted contrast volume (targeted volume of 1.2 mL/kg for the 1st study and 0.8 mL/kg for the 2nd study) was applied in both groups. Dual Energy mode was used for both the DS-PCD-CT and the DS-EID-CT. Polychromatic images and VMI (40 keV and 70 keV) were reconstructed for both the DS-EID-CT and the DS-PCD-CT data (termed T3D). Two radiologists assessed subjective image quality using a 5-point Likert-scale. Each reader drew ROIs within parenchymatous organs and vascular structures to analyze image noise, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR).Results: Median time interval between scans was 12 months (Min: 6 months; Max: 36 months). BMI classification included overweight (n = 10, 14.7 %), obesity grade I (n = 38, 55.9 %), grade II (n = 13, 19.1 %) and grade III (n = 7, 10.3 %). The SNR achieved with DS-PCD-CT at QIR level 3was 12.61 vs. 11.47 (QIR 2) vs. 10.53 (DS-EID-CT), irrespective of parenchymatous organs. For vessels, the SNR were 16.73 vs. 14.20 (QIR 2) vs. 12.07 (DS-EID-CT). Moreover, the obtained median noise at QIR level 3 was as low as that of the DS-EID-CT (8.65 vs. 8.65). Both radiologists rated the image quality higher for DS-PCD-CT data sets (p < 0.05). The highest CNR was achieved at 40 keV for both scanners. T3D demonstrated significantly higher SNR and lower noise level compared to 40 keV and 70 keV. Median CTDIvol and DLP values for DS-PCD-CT and DS-EID-CT were 10.90 mGy (IQR: 9.31 - 12.50 mGy) vs. 16.55 mGy (IQR: 15.45 - 18.17 mGy) and 589.50 mGy * cm (IQR: 498.50 - 708.25 mGy * cm) vs. 848.75 mGy * cm (IQR: 753.43 - 969.58 mGy * cm) (p < 0.001).Conclusion: Image quality can be maintained while significantly reducing the contrast volume and the radiation dose (27% and 34% lower DLP and 31% lower CDTIvol) for abdominal contrast-enhanced CT using a 1st-generation DS-PCD-CT. Moreover, polychromatic reconstruction T3D on a DS-PCD-CT enables sufficient diagnostic image quality for oncological imaging.
更多
查看译文
关键词
abdominal ct,standard dose contrast volume,obese patients,detector technology,overweight,contrast-enhanced,second-generation,dual-source
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要