Constructing P2/O3 biphasic structure of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览6
暂无评分
摘要
Fe/Mn-based layered oxide cathode is regarded as a competitive candidate for sodium-ion batteries (SIBs) because of its high theoretical capacity, earth abundance and low cost. However, its poor cycling stability still remains a major bottleneck. Herein, P2/O3 biphasic Na0.67Fe0.425Mn0.425Cu0.15O2 layered oxide is successfully synthesized via a sol-gel method. It is observed that Cu substitution can facilitate the conversion of P2 to O3 phase, and the P2/O3 composite structure can be obtained with an appropriate amount of Cu. Meanwhile, in-situ XRD reveals that constructing P2/O3 composite structure can realize the highly reversible phase transition process of P2/O3-P2/P3-OP4/OP2 and decrease the lattice mismatch during Na+ insertion/extraction. Consequently, the biphasic P2/O3-Na0.67Fe0.425Mn0.425Cu0.15O2 electrode exhibits 87.1 % capacity retention after 100 cycles at 1C, while the single phase P2-Na0.67Fe0.5Mn0.5O2 electrode has only 36.4 %. Therefore, the constructing biphasic structure is proved to be an effective strategy for designing high-performance Fe/Mn-based layered oxide cathodes.
更多
查看译文
关键词
P 2/O3 biphasic structure,Cu substitution,Fe/Mn-based layered oxide,Sodium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要