Spatio-Temporal Positron Emission Tomography Reconstruction with Attenuation and Motion Correction

Journal of imaging(2023)

引用 0|浏览2
暂无评分
摘要
The detection of cancer lesions of a comparable size to that of the typical system resolution of modern scanners is a long-standing problem in Positron Emission Tomography. In this paper, the effect of composing an image-registering convolutional neural network with the modeling of the static data acquisition (i.e., the forward model) is investigated. Two algorithms for Positron Emission Tomography reconstruction with motion and attenuation correction are proposed and their performance is evaluated in the detectability of small pulmonary lesions. The evaluation is performed on synthetic data with respect to chosen figures of merit, visual inspection, and an ideal observer. The commonly used figures of merit-Peak Signal-to-Noise Ratio, Recovery Coefficient, and Signal Difference-to-Noise Ration-give inconclusive responses, whereas visual inspection and the Channelised Hotelling Observer suggest that the proposed algorithms outperform current clinical practice.
更多
查看译文
关键词
tomography,motion correction,attenuation,spatio-temporal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要