pH and NaCl Optimisation to Improve the Stability of Gold and Silver Nanoparticles' Anti-Zearalenone Antibody Conjugates for Immunochromatographic Assay

Methods and protocols(2023)

Cited 0|Views3
No score
Abstract
The aim of this research is to define optimal conditions to improve the stability of gold and silver nanoparticles' anti-zearalenone antibody conjugates for their utilisation in lateral flow immunochromatographic assay (LFIA). The Turkevich-Frens method was used to synthesise gold nanoparticles (AuNPs), which were between 10 and 110 nm in diameter. Silver nanoparticles (AgNPs) with a size distribution of 2.5 to 100 nm were synthesised using sodium borohydride as a reducing agent. The onset of AuNP and AgNP aggregation occurred at 150 mM and 80 mM NaCl concentrations, respectively. Stable Au and Ag nanoparticle-antibody conjugates were achieved at 1.2 mM of K2CO3 concentration, which corresponds to the pH value of approximate to 7. Lastly, the highest degree of conjugation between Au and Ag nanoparticles and anti-zearalenone antibodies was at 4 and 6 mu g/mL of antibody concentrations. The optimisation of the conjugation conditions can contribute to better stability of nanoparticles and their antibody conjugate and can improve the reproducibility of results of bioreporter molecules in biosensing lateral flow devices.
More
Translated text
Key words
silver nanoparticles,anti-zearalenone
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined