Solvent based fractional biosynthesis, phytochemical analysis, and biological activity of silver nanoparticles obtained from the extract of Salvia moorcroftiana.

PloS one(2023)

引用 2|浏览8
暂无评分
摘要
Multi-drug resistant bacteria sometimes known as "superbugs" developed through overuse and misuse of antibiotics are determined to be sensitive to small concentrations of silver nanoparticles. Various methods and sources are under investigation for the safe and efficient synthesis of silver nanoparticles having effective antibacterial activity even at low concentrations. We used a medicinal plant named Salvia moorcroftiana to extract phytochemicals with antibacterial, antioxidant, and reducing properties. Three types of solvents; from polar to nonpolar, i.e., water, dimethyl sulfoxide (DMSO), and hexane, were used to extract the plant as a whole and as well as in fractions. The biosynthesized silver nanoparticles in all extracts (except hexane-based extract) were spherical, smaller than 20 nm, polydispersed (PDI ranging between 0.2 and 0.5), and stable with repulsive force of action (average zeta value = -18.55±1.17). The tested bacterial strains i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were found to be sensitive to even small concentrations of Ag-NPs, especially P. aeruginosa. The antibacterial effect of these Ag-NPs was associated with their ability to generate reactive oxygen species. DMSO (in fraction) could efficiently extract antibacterial phytochemicals and showed activity against MDR bacteria (inhibition zone = 11-12 mm). Thus, the antibacterial activity of fractionated DMSO extract was comparable to that of Ag-NPs because it contained phytochemicals having solid antibacterial potential. Furthermore, Ag-NPs synthesized from this extract owned superior antibacterial activity. However, whole aqueous extract-based Ag-NPs MIC was least (7-32 μg/mL) as compared to others.
更多
查看译文
关键词
silver nanoparticles,phytochemical analysis,salvia moorcroftiana,fractional biosynthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要