谷歌浏览器插件
订阅小程序
在清言上使用

Enhanced metabolic resistance mechanism endows resistance to metamifop in Echinochloa crus-galli (L.) P. Beauv.

Pesticide Biochemistry and Physiology(2023)

引用 0|浏览16
暂无评分
摘要
Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.), one of the worst weeds in paddy fields in China, has been frequently reported evolving resistance to acetyl-CoA carboxylase (ACCase) inhibiting herbicides. However, in the previous research, more attention was paid to target-site resistance (TSR) mechanisms, the non-target-site resistance (NTSR) mechanisms have not been well-established. In this study, the potential mechanism of resistance in a metamifop-resistant E. crus-galli collected from Kunshan city, Jiangsu Province, China was investigated. Dose-response assays showed that the phenotypic resistant population (JS-R) has evolved 4.3-fold resistance to metamifop compared with the phenotypic susceptible population (YN-S). The ACCase CT gene sequencing and relative ACCase gene expression levels studies showed that no mutations were detected in the ACCase CT gene in both YN-S and JS-R, and there was no significant difference in the relative ACCase gene expression between YN-S and JS-R. After the pre-processing of glutathione-S-transferase (GSTs) inhibitor NBD-Cl, the resistance level of JS-R to metamifop was reversed 18.73%. Furthermore, the GSTs activity of JS-R plants was significantly enhanced compared to that of YN-S plants. UPLC-MS/MS revealed that JS-R plants had faster metabolic rates to metamifop than YN-S plants. Meanwhile, the JS-R popultion exhibited resistant to cyhalofop-butyl and penoxsulam. In summary, this study presented a novel discovery regarding the global emergence of metabolic resistance to metamifop in E. crus-galli. The low-level resistance observed in the JS-R population was not found to be related to TSR but rather appeared to be primarily associated with the overexpression of genes in the GSTs metabolic enzyme superfamily.
更多
查看译文
关键词
metabolic resistance mechanism,metamifop,crus-galli
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要