Optimising GPGPU Execution Through Runtime Micro-Architecture Parameter Analysis

2023 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION, IISWC(2023)

引用 0|浏览10
暂无评分
摘要
GPGPU execution analysis has always been tied to closed-source, proprietary benchmarking tools that provide high-level, non-exhaustive, and/or statistical information, preventing a thorough understanding of bottlenecks and optimization possibilities. Open-source hardware platforms offer opportunities to overcome such limits and co-optimize the full hardware-mapping-algorithm compute stack. Yet, so far, this has remained under-explored. In this work, we exploit micro-architecture parameter analysis to develop a hardware-aware, runtime mapping technique for OpenCL kernels on the open Vortex RISC-V GPGPU. Our method is based on trace observations and targets optimal hardware resource utilization to achieve superior performance and flexibility compared to hardware-agnostic mapping approaches. The technique was validated on different architectural GPU configurations across several OpenCL kernels. Overall, our approach significantly enhances the performance of the open-source Vortex GPGPU, contributing to unlocking its potential and usability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要