A Novel Dopingless Ternary FET With the Metal Source for Ternary Inverter Implementation

IEEE Transactions on Nanotechnology(2023)

Cited 0|Views8
No score
Abstract
This article proposes a novel dopingless ternary FET (DLT-FET) composed of the longitudinal metal-source/InAs-channel/InAs-drain structure for compact implementation of the ternary inverter. A single DLT-FET mixes two types of carrier transport mechanisms: 1) according to the concept of charge plasma, the Band-to-Band tunneling (BTBT) can occur at channel/drain interface by metal work function engineering; 2) Schottky Barrier tunneling (SBT) at the source/channel interface. The mechanism of the DLT-FET is verified with the help of TCAD tools. The simulation results revealed that both N/P-type DLT-FETs have a flat drain current characteristic around V G = 0.5 V DD , where the V G -independent I BTBT dominates the drain current. The stable third output voltage can be obtained through the voltage dividing, while both the I SBT and I BTBT generate the other voltage levels of 0 V and 1.0 V DD . Furthermore, the effects of a series of key device parameters on DLT-FETs and ternary inverter performance are evaluated. The ternary inverter can be implemented by simply replacing two transistors with N/P-type DLT-FETs in a conventional binary inverter and selecting appropriate device parameters for exhibiting comparable transfer characteristics.
More
Translated text
Key words
novel dopingless ternary fet
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined